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• Cosmic Acceleration - Dark Energy - 
Modified Gravity

• Central question: How do new degrees of 
freedom couple to Standard Model + Dark 
Matter

• Categorizing Models of Dark Energy

• Example Theoretical Constructions

Overview



Cosmic Acceleration

Dark Energy? Modified Gravity?

Cosmological constant?



Frieman et al.  (2008) Ann.Rev.Astron.Astrophys

Data points tantalizingly 
close to

w = −0.94± 0.1

w = −1

Cosmic 
Acceleration

w =
p

ρ
< −1/3

The Universe is Accelerating!
Acceleration can only occur if

2011 Nobel Prize 
in Physics

Riess, Perlmutter, Schmidt



Why are we so concerned?

Cosmic Coincidence 
Problem

Cosmological Constant 
Problem

New physics at Hubble 
scales?

New physics at a 
millimeter scales?



Scales of Dark Energy
There are two natural scales associated with Dark Energy

H2 =
8πG

3
ρ

Curvature scale

Λ ∼ m2 ∼ 1
R2

m = 10−33eV
R ∼ 3800 Mpc

Energy scale

Submillimeter scale

ρΛ =
1

8πG
Λ ∼ m4

Cosmological scale

L = 0.1 mm
m = 1meV



Cosmic Coincidence problem
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Why does dark energy come to dominate today? 
around the time of structure formation?

Universe began accelerating about 
redshift z~0.4 and age 10 Gyr

Ωd.e.

ΩM
∼ a3

Also seems 
coincidental that 
visible and dark 
matter are only a few 
orders of magnitude 
away from each other 
today



Cosmological constant 
problem

ΛWhy is       so un(technically) naturally small?

∆ρΛ =
8πG

3
∆Λ ∼

∑
m4

i ln(mi/µ)

me
4/ρ ~ 1036      mW

4/ρ ~ 1056 

Despite being most relevant operator:   most UV sensitive!

C.C. is leading ‘relevant operator’ in action for gravity

S =
∫

d4x
√
−g

(
− 1

16πG
Λ +

1
16πG

R + LM

)

graviton

electron



Cosmological constant 
problem

Why doesn’t Lambda pick up a large contribution from 
Phase Transitions?

Potential energy of Higgs field

QCD condensate energy in presence of 
qqbar bilinears (chiral symmetry breaking) 

V ∼ (100GeV )4

V ∼ (100MeV )4

Even if we resolve zero-point fluctuations, 
we have to classically tune away these large contributions

Examples:



Cosmological        versus         Dynamical
    Constant                           Dark Energy  

w = −1

Cosmological constant Dynamical Dark Energy

existence of new d.o.f.
i.e. new particles 

beyond gravity + SM (+DM)

w != −1

Tµν = − 1
8πG

Λgµν



Categorizing Dark Energy/
Modified Gravity Models via 

Screening



New Degrees of Freedom
Cosmological constant is the `unique’ large 
distance modification to GR that does not 
introduce any new degrees of freedom

Dynamical Models of Dark Energy or Modified 
Gravity will be distinguished by new d.o.f. (i.e. 
dynamical perturbations!)  

New degrees of freedom must 
necessarily by incredibly light! md.e. ≤ 10−33eV



Fifth Forces (solar system)

Equivalence Principle Tests etc.

Binary Pulsar Timing

Nucleosynthesis

Cosmological Moduli Problems

New gravitational degrees of freedom 
that coupled to matter are highly 

constrained

Need some kind of 
screening mechanism to 
hide extra d.o.f.



Why are new d.o.f. nearly always scalars?

If theory Lorentz invariance, new d.o.f characterized by spin

Must be effectively bosonic (even if fundamentally fermionic)

Massive spin 2 = Massless spin 2 + Massless spin 1 + Scalar

Massive spin 1 = Massless spin 1 + Scalar

Massless spin 1 must coupled to conserved vector but ∂µTµ
ν = 0

(=GR!)

~ always some range of energies for which 
every D.E./modified gravity theory looks 

like GR plus scalars!



Interactions of new d.o.f.

Imagine a scalar φ = φb + δφ

coupled to the energy density ρ = ρb + δρ

Generic form of effective action for perturbations:

S2 =
∫

d4x− 1
2
Z(φb, ρb)(∂δφ)2 − 1

2
m2(φb, ρb)δφ2 +

β(φb, ρb)
MPl

δρ δφ

kinetic term mass term coupling to matter



Fifth force contribution

S2 =
∫

d4x− 1
2
Z(φb, ρb)(∂δφ)2 − 1

2
m2(φb, ρb)δφ2 +

β(φb, ρb)
MPl

δρ δφ

Force between two 
masses:

F ≈ m1m2

M2
Plr

2

β(φb, ρb)√
Z(φb, ρb)

exp(−m(φb, ρb)r)



Fifth force constraints: screening

To ensure fifth forces are small

β(φb, ρb)√
Z(φb, ρb)

exp(−m(φb, ρb)r)" 1

Only three independent possibilities!

(b) Mass is large

(a) Coupling is small

(c) Kinetic term is large

β(φb, ρb)! 1

Z(φb, ρb)! 1

m(φn, ρb)!
1

rexp



Screening Mechanisms

I. `Screening without Screening’ - make coupling to matter 
universally small - e.g. Quintessence

β(φb, ρb)! 1

F ≈ m1m2

M2
Plr

2

β(φb, ρb)√
Z(φb, ρb)

exp(−m(φb, ρb)r)



Screening Mechanisms

I. `Screening without Screening’ - make coupling to matter 
universally small - e.g. Quintessence

β(φb, ρb)! 1

F ≈ m1m2

M2
Plr

2

β(φb, ρb)√
Z(φb, ρb)

exp(−m(φb, ρb)r)

II. Make coupling to matter environmental (small in high density 
envinments, large in low density environments) - e.g. Symmetron

at high densities:



Screening Mechanisms

I. `Screening without Screening’ - make coupling to matter 
universally small - e.g. Quintessence

II. Make coupling to matter environmental (small in high density 
envinments, large in low density environments) - e.g. Symmetron

III. Make mass environmental (large in high density environments, 
small in low density environments) - e.g. Chameleon

at high densities:

F ≈ m1m2

M2
Plr

2

β(φb, ρb)√
Z(φb, ρb)

exp(−m(φb, ρb)r)

m(φn, ρb)!
1

rexp



Screening Mechanisms

I. `Screening without Screening’ - make coupling to matter 
universally small - e.g. Quintessence

II. Make coupling to matter environmental (small in high density 
envinments, large in low density environments) - e.g. Symmetron

III. Make mass environmental (large in high density environments, 
small in low density environments) - e.g. Chameleon

IV. Make kinetic term environmental (large in high density 
environments, small in low density environments)- e.g.Vainshtein 
mechanism - Massive Gravity, Galileon Z(φb, ρb)! 1



Constructing Models of Dark Energy



What is 
Dark Energy?

Graviton 
is spin-2, massless

field

Graviton 
is not spin-2, massless

field

DE is not dynamical
(no new dof)

DE is dynamical
(new dof)

Minimally coupled 
to matter

Non-minimally 
coupled to matter

Quintessence

Backreaction

Λ

Brans Dicke
eg. f(R)

Unique Λ

Landscape
of vacua

Tunneling
dynamics

Anthropic
arguments

Eternal 
inflation

Graviton has
mass (resonance)

Lorentz invariance
is broken

Nonlocality

Consistent IR 
modification of

gravity

Ghost 
condensate

Infinite extra
dimensions

Self-
acceleration

Filtering / 
degravitation
mechanism

DGP

Cascading
Gravity
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SLEDSLEDSLED

de Rham & AJT, Lectures on Dark Energy and the Cosmological Constant Challenge, Nordita 2008



1. Making the coupling small 
universally

Theoretical Models:

Quintessence and its multifarious 
generalizations!!!

These are the Vanilla models of Dark Energy

β(φb, ρb)! 1



Quintessence

S =
∫

d4x
√
−g

(
M2

pl

2
R− 1

2
(∇φ)2 − V (φ)

)
+ Sm

Canonical Example: Scalar field with no direct coupling to matter

Dark energy contributes to the background evolution, and plays an 
indirect role in perturbations, additional isocurvature modes

Can tolerate a very small coupling (e.g. 
one protected by a shift symmetry) Brax et al. 0904.3471



Tuning/Technical Naturalness

 Typically not technically natural (Eta problem in 
Inflation) - significantly worse for Dark Energy 

∆V ∼ V (φ)
φ2

M2
pl

dim 6 operators

Closely akin to Higgs 
mass/gauge hierarchy 

problem

mass quadratically 
divergent, pick up mass 
comparable to heaviest 

particle



• Technically natural Scalar Field arises as a 
pseudo-Nambu-Goldstone field associated 
with an approximately broken continuous 
global symmetry 

Scalars kept light by an approximate shift 
symmetry

e.g. U(1) symmetry of mexican hat

φ→ φ + C

Explicitly broken but by a 
small amount



Freezing Models

Scaling fields: Attractor of 
Autonomous System, D.E. 
constant fraction of total

CONTENTS 13

Figure 5. In the recent expansion history, matter and dark energy have contributed
similar amounts of energy density (shown here normalized to the present matter
density) but this is apparently coincidental. Among quintessence models, the energy
density of the cosmological constant or a thawing field differs substantially at early
times from freezing fields such as trackers or scalers, one example of classification of
dark energy models.

known [21, 22, 23] and for stochastic inhomogeneities shown to be unimportant in the

slow motion, weak field limit [24].

To grasp this intuitively, consider that the expansion rate of space is not a single

number but a 3 × 3 matrix over the spatial coordinates. The analog of the Hubble

parameter is (one third) the trace of this matrix, so inhomogeneities capable of altering
the global expansion so as to mimic acceleration generically lead to changes in the other

matrix components. This induces shear or rotation of the same order as the change in

expansion, leading to an appreciably anisotropic universe. Observations however limit

shear and rotation of the expansion to be less than 5 × 10−5–10−6 times the Hubble

term [25].

Thus, to create the illusion of acceleration one would have to carefully arrange the
material contents of the universe, adjusting the density along the line of sight (spherical

symmetry is not wholly necessary with current data quality). Again, this has long been

discussed [26, 27, 28] and indeed changes the distance-redshift relation. The simple

model of [29] poses the problem in its most basic terms, clearly demonstrating its

meaning. It considers an inhomogeneous, matter only universe with a void (α = 0 for

the Dyer-Roeder smoothness parameter) somewhere along the line of sight, extending
from z1 to z1 + ∆z, and finds that the distances to sources lying at higher redshift do

not agree with the FRW relation. Even for very high redshift sources where the cosmic

Freezing: Field rolls to minimum during 
deceleration (w>-1,w’<0), slows down 
as comes to dominate universe

Tracking fields: Attractor in 
sense of independence of 
initial conditions, D.E. has 
different equation of state 
to total

Linder 0801.2968

see e.g. Copeland et al. review
hep-th/0603057



Thawing Models

Thawing quintessence models 3

Figure 2. Families of potentials which reachΩφ = 0.75, and have positive
values of the parameter α, for c = 0.5 (top solid line) to 5 (lowest solid

line) in steps of 0.5. The short-close-dashed line delineates the range of val-
ues allowed by recent observational data and the dotted line represents the

limit where α = 0. The dot-dash line indicates the ten-year observational

prospects discussed in Section 3.2, while the spaced-dashed and the long-

dashed curves represent potentials withΓi = 0 and Γ0 = 0 respectively.

3 OBSERVATIONAL CONSTRAINTS

3.1 Current constraints

The present-day dark energy density parameter has an observed

value of Ωφ ≈ 0.75 (Komatsu et al. 2008) and using equation (9)
we can determine which trajectories reach this value and as such

may be representative of the real world (e.g. Fig. 1).

The set of possible models is better constrained, how-

ever, by considering their representation in the w0–wa plane.

Thawing dark energy is well parameterized by the equation

(Chevallier & Polarski 2001; Linder 2003)

w(a) = w0 + wa(1 − a), (14)

wherew0 represents the present-day value ofw, andwa determines

the change in w with the scale factor a. Equation (10) can now be
used to derive expressions for w0 and wa in terms of the variables

of the autonomous system. Since a = 1 at the present day we have

w0 =
x2

0 − y2
0

x2
0
+ y2

0

, (15)

where x0 and y0 are the present-day values of x and y. The obser-
vational constraint that w is close to −1 therefore requires viable
trajectories to remain close to the y-axis at the time they reach the
semicircle indicating the correct dark energy density.

The time dependence of the equation of state is also obser-

vationally constrained, though less strongly. Combining equations

(10) and (14) leads to the expression forwa

wa = − 4x0y0

(x2
0
+ y2

0
)2

 

−3x0y0 + λ0

r

3
2
y3

0 + λ0

r

3
2
x2

0y0

!

,

(16)

where λ0 is the present-day value of λ.
The coordinates at which trajectories reach the present dark

energy density can now be used in these two equations to plot the

Figure 3. As Fig. 2, but for potentials with negative values of the parameter

α and c = 0 (lowest solid curve) to 1 (top solid line) in steps of 0.1. The
spaced-dashed line is the −wa ≥ 1 + w0 thawing limit, while the long-

dashed curve represents the curve whereX = 3/4 (see Section 4).

predictions from families of potentials in thew0–wa plane, shown

in Figs. 2 and 3. These values are compared to the observationally-

allowed region (short-close-dashed curve) obtained by Komatsu et

al. (2008) from a combination of baryon acoustic oscillation, type

1A supernovae and WMAP5 data at a 95% confidence limit, and

would only be marginally improved by the inclusion of big-bang

nucleosynthesis constraints.

One might further worry whether the approximation of con-

stant wa is accurate enough, and indeed Dutta & Scherrer (2008)

indicated that in some parameter regions it will not be. We quantify

this below by delineating the regions of parameter space in which

wa has varied by more than 25% from redshift one to the present.

Each of the solid curves in Figs. 2 and 3 represents a family

of potentials with the same value of the parameter c in the expo-
nent, but different values of the linear parameter α and therefore

λi (remember λi = c − α). They are not the evolutionary tracks
of particular potentials, but rather indicate the points in the w0–wa

plane which different potentials have reached at the present day.

The largest values of α are at the left-hand end of the curves in

Fig. 2, where they all share a common origin at the point [−1, 0],
corresponding to the cosmological constant. Potentials at this point

have c = α which means that λi = 0 and so they are flat, while
nearby potentials have negative curvature, ie. Γ < 0, and corre-
spond to the case of hilltop quintessence as described by Dutta &

Scherrer (2008). Moving to the right along the curves the potentials

have decreasing values of α and hence increasing λi, ie. increas-

ingly negative initial slope.

Useful orientation into the behaviour of the family of models

comes from studying the time dependence ofΓ. We see from equa-
tion (12) that λ is monotonically increasing with time, and henceΓ
too is an increasing function whose initial value may be positive or

negative (we keep c > 0 throughout, corresponding toφ increasing
with time). The sign of Γ is the same as of V ′′, and hence deter-

mines whether the potential is steepening or become more shallow

with time, with Γ = 0 corresponding to a point of inflection in the
potential. We can then classify the models as follows. If the ini-

c© 0000 RAS, MNRAS 000, 000–000

Thawing: Field frozen away 
from minimum at early 
times by Hubble damping 
(w~-1) then thaw w’>0

Thawing must be slow to be 
consistent with observations

Clemson+Liddle, 0811.4676

w(a) = w0 + wa(1− a)



Natural generalizations of quintessence:

k-essence

 Assisted Quintessence Kim et al. 2005

Armendariz-Picon et al.2000

Many attempts for example at 
embeddings in Low Energy 
Supergravity Models

(modify kinetic term of quintessence field)

(many fields evolving in tandem)

e.g. Brax and Martin 1999 

Creminelli et al. 2008

Many generalizations can be 
incorporated into a unified EFT 
approach for perturbations

http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Creminelli%2C%20Paolo%22
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Creminelli%2C%20Paolo%22


Quintessence with a hint of modified 
gravity

Vanilla model of dark sector interaction:

N.B.  Although we dont require the chameleon mechanism 
to be active here, that doesn’t mean it wont take place!

S =
∫

d4x
√
−g

(
M2

pl

2
R− 1

2
(∂φ)2 − V (φ)

)
+ Svisible[gµν ,χi] + Sdark[β(φ)gµν , ξi]

or for example:

Sdark =
∫

d4x
√
−g

(
−m(φ)ψ̄ψ + Lkin(ψ)

)

Constraints on coupling of dark energy to visible matter are 
very strong (in absence of (kinetic) chameleon effects) but not so to dark 
matter!!



1I. Making the coupling small 
environmentally

Theoretical Models:

Symmetron - as yet no other explicit 
example

β(φb, ρb)! 1



Symmetron

1. Symmetry 
2. Symmetry breaking potential
3. Non-minimal coupling to matter density

Consider a scalar with

example

S =
∫

d4x
√
−g

(
−1

2
(∂φ)2 − 1

4
λφ4 +

1
2
µ2φ2 + LM (gµν(1 + φ2/M2))

)

Z2 symmetry Broken symmetry vev 
φ→ −φ φ2 = µ2/λ

Khoury and Hinterbichler 2010



Symmetron - effective potential
S =

∫
d4x
√
−g

(
−1

2
(∂φ)2 − 1

4
λφ4 +

1
2
µ2φ2 + LM (gµν(1 + φ2/M2))

)

As a result of non-minimal coupling, effective potential is

At low densities symmetry broken, coupling large

At high densities symmetry recovered, coupling small

Veff(φ) =
1
2

( ρ

M2
− µ2

)
φ2 +

1
4
λφ4

ρ < µ2M2

ρ > µ2M2

β ∼ φMPL

M2

φ ∼ µ2/λ β ∼ µ2MPl

λM2

φ ∼ 0 β ∼ 0

M ≤ 10−3MPl µ−1 ∼Mpc



1II. Making the mass large 
environmentally

Theoretical Models:

Chameleon, Generalized Branes-Dicke 
models, f(R)

m(φn, ρb)!
1

rexp



rendered uninterestingly small. Since this stringent constraint only applies to
visible matter, many authors have relaxed the assumption of universal cou-
pling and explored models in which the scalar field only substantially interacts
with the dark matter [12–18].

A tantalizing alternative is that the apparent decoupling of the scalar field is
a local effect, owing to the large matter density of the solar system or pulsar
environment. While decoupled locally, the scalar field can have interesting
cosmological effects in the much sparser cosmic environment. There are only
two known ways to realize this idea.

The first mechanism, discussed in Sec. 2.1, is the chameleon effect [19–21]: by
adding a suitable potential, the scalar field acquires mass which depends on the
density. The mass is large in regions of high density, thereby suppressing any
long-range interactions. (Density-dependent effective couplings were initially
noted in a different context [22].) Theories of f(R) gravity [23,24] rely on the
chameleon effect to ensure consistency with solar system tests [25,26].

An alternative mechanism, discussed in Sec. 2.3 is the Vainshtein effect, which
ensures the phenomenological viability of DGP [27] and Cascading Grav-
ity [28–30] models. In this case, the longitudinal graviton or brane-bending
mode acquires a large kinetic term in the vicinity of astrophysical objects and
therefore decouples.

2.1 Chameleon theories and f(R) models

Chameleon field theories generalize (2) to include a suitable scalar potential
V (φ), whose properties will be discussed shortly:

Scham =
∫

d4x
√
−g

(
M2

Pl

2
R− 1

2
(∂φ)2 − V (φ)

)

+ Smatter

[
g e2βφ/MPl

]
. (3)

This action can be further generalized in various ways. One can generate vio-
lations of the Equivalence Principle by allowing different couplings βi for the
various matter fields. One can also couple the chameleon to the electromag-
netic term, resulting in photon-chameleon mixing [31] and induced polarization
in the spectrum of astronomical objects [32]. For the purpose of this article,
however, we will stick to the simpler case of universal, conformal coupling. The
parameter β is implicitly assumed to be O(1), corresponding to gravitational-
strength coupling. Remarkably, it was pointed out in [33] that much larger
couplings are allowed by current constraints. However, one must be concerned
with an adiabatic instability arising in this case [34].

3
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Fig. 1. The chameleon effective potential Veff (solid curve) is the sum of two contri-
butions: the actual potential V (φ) (dashed curve), plus a density-dependent term
from its coupling to matter (dotted curve). Taken from [19].

Because of its coupling to matter fields, the scalar field is affected by ambient
matter density. For starters, consider a non-relativitistic perfect fluid with
homogeneous density ρ. In this medium, the dynamics of φ are governed by
an effective potential

Veff(φ) = V (φ) + ρ eβφ/MPl . (4)

And for suitably chosen V (φ), this will have a minimum at some finite field
value φmin, as illustrated in Fig. 1, with effective mass

m2
eff = V,φφ(φmin) +

β2

M2
Pl

ρ eβφ/MPl . (5)

The general conditions on V (φ) are as follows [35]: (i) to balance the potential
against the density term, we must have V,φ < 0 over the relevant field range;
(ii) since V,φφ typically gives the dominant contribution to the mass term,
stability requires V,φφ > 0; (iii) the effective mass will increase with density
provided that V,φφφ < 0.

A prototypical potential satisfying all of these conditions is the inverse power-
law form, V (φ) = M4+n/φn, where n is some positive constant. This falls
within the class of tracker potentials relevant for quintessence models of dark
energy [36]. Assuming βφ ! MPl, which will be the case for most situations

4
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Fig. 1. The chameleon effective potential Veff (solid curve) is the sum of two contri-
butions: the actual potential V (φ) (dashed curve), plus a density-dependent term
from its coupling to matter (dotted curve). Taken from [19].

Because of its coupling to matter fields, the scalar field is affected by ambient
matter density. For starters, consider a non-relativitistic perfect fluid with
homogeneous density ρ. In this medium, the dynamics of φ are governed by
an effective potential

Veff(φ) = V (φ) + ρ eβφ/MPl . (4)

And for suitably chosen V (φ), this will have a minimum at some finite field
value φmin, as illustrated in Fig. 1, with effective mass

m2
eff = V,φφ(φmin) +

β2

M2
Pl

ρ eβφ/MPl . (5)

The general conditions on V (φ) are as follows [35]: (i) to balance the potential
against the density term, we must have V,φ < 0 over the relevant field range;
(ii) since V,φφ typically gives the dominant contribution to the mass term,
stability requires V,φφ > 0; (iii) the effective mass will increase with density
provided that V,φφφ < 0.

A prototypical potential satisfying all of these conditions is the inverse power-
law form, V (φ) = M4+n/φn, where n is some positive constant. This falls
within the class of tracker potentials relevant for quintessence models of dark
energy [36]. Assuming βφ ! MPl, which will be the case for most situations

4

Khoury and Weltman, 2003

Chameleon effect

starts with 
same idea:
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Fig. 1. The chameleon effective potential Veff (solid curve) is the sum of two contri-
butions: the actual potential V (φ) (dashed curve), plus a density-dependent term
from its coupling to matter (dotted curve). Taken from [19].

Because of its coupling to matter fields, the scalar field is affected by ambient
matter density. For starters, consider a non-relativitistic perfect fluid with
homogeneous density ρ. In this medium, the dynamics of φ are governed by
an effective potential

Veff(φ) = V (φ) + ρ eβφ/MPl . (4)

And for suitably chosen V (φ), this will have a minimum at some finite field
value φmin, as illustrated in Fig. 1, with effective mass

m2
eff = V,φφ(φmin) +

β2

M2
Pl

ρ eβφ/MPl . (5)

The general conditions on V (φ) are as follows [35]: (i) to balance the potential
against the density term, we must have V,φ < 0 over the relevant field range;
(ii) since V,φφ typically gives the dominant contribution to the mass term,
stability requires V,φφ > 0; (iii) the effective mass will increase with density
provided that V,φφφ < 0.

A prototypical potential satisfying all of these conditions is the inverse power-
law form, V (φ) = M4+n/φn, where n is some positive constant. This falls
within the class of tracker potentials relevant for quintessence models of dark
energy [36]. Assuming βφ ! MPl, which will be the case for most situations

4

Conditions necessary for chameleon 
mechanism to take place:

V,φ < 0 V,φφ > 0 V,φφφ < 0

Balance m increase with densityStability

easy to satisfy, e.g.
V (φ) ∼ M4+n

φn

To satisfy fifth force
M < 1meV

β > 0

Chameleon effect



Thin shell effect

ρinside

ρoutside

Thin shell of gradient energy

ρinside

Khoury and Weltman 2004

Cosmologically chameleon behaves like matter at early times 
and c.c. at late times (Like a freezing model) 

∆R

R
=

1
6βMpl

φoutside − φinside

ΦN

For most objects only a thin shell around the edge of the object 
contributes to the Newtonian potential

If chameleons couple to photons (such couplings can be 
generated via loops) they affect astronomical 
observations of polarization and luminosity



Chameleons Issues

mφ ∼ β
Λ2

UV

Mpl
∼ 1meV

β ∼ O(1)

ΛUV ∼ TeV

Naively not technically natural

when

Adiabatic Instability (for 
strongly coupled chameleons)

Type of Jeans instability, exponential 
growth of small scale modesc2

s < 0

Bean et al. 2007



IV. Making the kinetic term 
large environmentally

Theoretical Models:
Vainshtein (or kinetic chameleon) 

mechanism: 

Massive Gravity, DGP, Cascading Gravity, 
Galileon models and their generalizations!

Mechanism relies on a nontrivial reorganization of effective field 
theory to allow for large kinetic terms - arguably only natural in the 

context of massive gravity/DGP/Cascading

Z(φb, ρb)! 1



Vainshtein (Kinetic Chameleon) effect

Allow in the action Irrelevant kinetic operators

Expanding around background 
solution, generates large kinetic term

S =
∫

d4x
√
−g

(
−1

2
(∂φ)2 − 1

Λ3
!φ(∂φ)2 +

φ

Mpl
ρ

)

schematically: !φ ∼ ρ

Mpl
Z ≈ 1 +

ρ

Λ3MPl

Z(φb, ρb)! 1 ρb ! Λ3MPl ∼ m2M2
Pl

Λ3 ∼ m2MPl

when



Galileon - a model that relies on 
Vainshtein

Again, as follows from Galilean invariance, the variation of the above term w.r.t. π only depends
on second derivatives of π. We can go on and study higher order invariants. In the Appendix
we show that formally there exists one and only one such Galilean-invariant at each order in
π. However, since each derivative Lagrangian term we will construct will be associated with
one Cayley invariant of the matrix ∂µ∂νπ, we will have as many non-trivial derivative Galilean
invariants as the rank of ∂µ∂νπ, that is the number of spacetime dimensions. In particular, in 4D
we only have five invariants: from the tadpole term, to a quintic derivative interaction 4.

At n-th order in π, the generic structure of a Galileo-invariant Lagrangian term is (∂2π)n−2∂π∂π.
For notational convenience, let’s denote by Π the matrix of second derivatives of π, Πµ

ν ≡ ∂µ∂νπ.
Also the brackets [ . . . ] stand for the trace operator, and the ‘·’ stands for the standard Lorentz-
invariant contraction of indices. So, for instance

[Π] ∂π · ∂π ≡ !π ∂µπ∂µπ . (33)

Then, up to fifth order in π the Galileo-invariant terms are

L1 = π (34)

L2 = −1
2 ∂π · ∂π (35)

L3 = −1
2 [Π] ∂π · ∂π (36)

L4 = −1
4

(

[Π]2 ∂π · ∂π − 2 [Π] ∂π · Π · ∂π − [Π2] ∂π · ∂π + 2 ∂π · Π2 · ∂π
)

(37)

L5 = −1
5

(

[Π]3 ∂π · ∂π − 3[Π]2 ∂π · Π · ∂π − 3[Π][Π2] ∂π · ∂π + 6[Π] ∂π · Π2 · ∂π

+2[Π3] ∂π · ∂π + 3[Π2] ∂π · Π · ∂π − 6 ∂π · Π3 · ∂π
)

(38)

The overall normalizations have been chosen to have simple normalizations in the equations of
motion, see below. Higher order Galileo-invariants are trivial in 4D, being just total derivatives.

For our purposes it is more convenient to work directly at the level of the equations of motion,
where there are no integration-by-parts ambiguities, and only second derivatives appear. Defining
Ei ≡ δLi

δπ , we get

E1 = 1 (39)

E2 = !π (40)

E3 = (!π)2 − (∂µ∂νπ)2 (41)

E4 = (!π)3 − 3 !π(∂µ∂νπ)2 + 2(∂µ∂νπ)3 (42)

E5 = (!π)4 − 6(!π)2(∂µ∂νπ)2 + 8 !π(∂µ∂νπ)3 + 3
[

(∂µ∂νπ)2
]2 − 6(∂µ∂νπ)4 (43)

where by (∂µ∂νπ)n we denote the cyclic contraction, (∂µ∂νπ)n ≡ [Πn].
The complete Lagrangian for π is a linear combination of the above invariants

Lπ =
5

∑

i=1

ci Li , (44)

4In 1D, i.e. mechanics, we just have two: the Galilean kinetic energy 1

2
m ẋ2 and the linear potential x.

9

Logic: write down every term in 
action consistent with symmetry

π → π + c
π → π + vµxµ

Πµ
ν = ∂µ∂νπ

Nicolis et al. 0811.2197

Self-acceleration 
without ghosts!



Massive Gravity leads to light scalars

New scalar degree of 
freedom, exhibits 
Galileon symmetry 
and Galileon 
interactions

Massive  spin-2 field, has 5 dof



Additional fifth force from scalar mode

Vh=0 =
1
3
mamoG

e−mr

r

at first sight such theories are ruled out!



Force now 
vanishes as 

Vh=0 ∼
1
3
mamoG

e−mr

r

1
1 + ρ̄e

m2M2
pl



Vainshtein effect is strongly scale and density dependent

Characteristic radius from source 
- Vainshtein radius

- helicity zero version of Schwarzschild radius

r ! rV

r ! rV

Z ! 1

Z ∼ 1

rV = (rsm
−2)1/3 Λ3 ∼ m2MPl

Strong coupling region

Weak coupling region

For Sun rV ∼ 250pc rs ∼ 3km m−1 ∼ 4000Mpc


